Ein Paper mit dem Titel ?Adapting the Segment Anything Model During Usage in Novel Situations“ von Robin Sch?n, Julian Lorenz, Katja Ludwig und Rainer Lienhart wurde auf dem Workshop für ?Efficient Large Vision Models (eLVM)“ akzeptiert. Dieser Workshop findet im Rahmen der CVPR 2024 in Seattle statt. Das Paper stellt eine Methode vor, um das Segment Anything Model (SAM) ohne Zuhilfenahme von zus?tzlichen Trainingsdaten zur Testzeit anzupassen. Anstelle dessen werden Information, welche w?hrend der Verwendung des Systems anfallen, zur Generierung von Pseudolabels verwendet.