伟德国际_伟德国际1946$娱乐app游戏

图片

SaMoA

?bersicht

samoa 5
? Universit?t Augsburg
samoa 2
? Universit?t Augsburg
samoa 1
? Universit?t Augsburg
samoa 3
? Universit?t Augsburg
samoa 4
? Universit?t Augsburg

Kurzüberblick

  • Anforderungsanalyse durch geführte Benutzerbefragung?

  • Automatisierte Auslegung von Monitoringsystemen ?

  • Evolution?re Algorithmen erstellen kompakte, transparente Verarbeitungsprogramme für Computing on the Edge?

  • Automatische FPGA-Konfiguration und Signalauslegung anhand von Modellparametern?

Die Potentiale von KI sind in vielen Unternehmen immer noch ungenutzt. Zu allem ?berfluss schafft es nur ein Teil der KI-Projekte, die Erwartungen im Einsatz zu erfüllen und Mehrwert zu generieren. Die?haupts?chlichen Gründe dafür sehen unabh?ngige Studien in der h?ufig unzureichenden Datenqualit?t sowie in der nicht erfolgten Anbindung von Datenquellen.

Insbesondere laufende Industrieanlagen k?nnen nur mit gro?em Aufwand digitalisiert werden. Die Auslegung von Kamera- und Sensorsystemen ist jedoch ein ebenso komplexes Feld wie die Entwicklung von KI-Systemen selbst.

Unternehmen des produzierenden Gewerbes und insbesondere Mittelst?ndler sehen sich also bei der Einführung von KI-Systemen mit hohen Einstiegshürden konfrontiert. Im Projekt SaMoA soll die Frage beantwortet werden, wie die Investitionen und die Unsicherheit bei der Einführung von intelligenten Monitoring-Anwendungen für Unternehmen deutlich reduziert werden k?nnen. Selbst-konfigurierende Systeme erm?glichen einen schnelleren Zugang zu flexibler Qualit?tskontrolle und hilft so, die Effizienz der Produktion deutlich zu erh?hen.

?

?

Bundesministerium für Bildung und Forschung | Andreas Margraf

Teilprojekt 1: Automatisierte Auslegung von Monitoringsystemen

Die Komplexit?t von Monitoringsystemen in der Industrie ist vielf?ltig und anspruchsvoll. Die Notwendigkeit, verschiedene Sensortypen, Schnittstellen und Integrationswege zu kombinieren, führte bisher zu langwierigen Design-Iterationen für spezifische Anforderungen. Sowohl die Auslegung einzelner Systeme, wie Bildverarbeitungsl?sungen, als auch die Kombination mehrerer Sensorprinzipien erforderte einen hohen Expertenaufwand. Im Rahmen des Teilprojekts Sensor- und Systemintegration für Monitoringsysteme (SaMoA) wird eine wegweisende L?sung pr?sentiert, die den Nutzern einen Gro?teil dieser herausfordernden Arbeit abnimmt. Durch die klare Erfassung von Design-Parametern mittels benutzergeführter Frageb?gen erm?glicht SaMoA eine pr?zise Auslegung von Monitoring Systemen.

?

?

?

?

? Universit?t Augsburg
CC BY-NC-ND

Das innovative Konzept basiert auf Modellen, die gem?? physikalischer Gesetzm??igkeiten und technischer Abh?ngigkeiten mithilfe wissenschaftlicher Methoden erstellt wurden. Diese Modelle dienen als Grundlage für die Designautomatisierung, wodurch eine benutzergeführte Generierung vollst?ndiger und CAD-f?higer Design-Varianten m?glich ist. SaMoA bietet eine revolution?re Perspektive für die Industrie, indem es die Komplexit?t der Systemintegration reduziert und gleichzeitig die Effizienz und Genauigkeit der Designprozesse verbessert. Es erm?glicht Ingenieuren und Fachexperten, sich auf h?herwertige Aufgaben zu konzentrieren, w?hrend die Software die Details der Systemintegration übernimmt. Diese bahnbrechende Technologie verspricht eine neue ?ra der Effizienz und Genauigkeit bei der Entwicklung und Integration von Monitoringsystemen, indem sie die menschliche Expertise mit automatisierten Designprozessen kombiniert.?

Teilprojekt 2: Adaptive QS mit Evolution?ren Algorithmen

Im Projekt greift das Konsortium tief in die Werkzeugkiste der Informatik: durch unkonventionelle, naturinspirierte KI-Modelle werden neue Wege beschritten. Evolution?re Algorithmen und modellbasierte Entwurfssprachen erm?glichen es Anwendern, Qualit?tssicherung neu zu denken:

?

  • Produktionsleiter, Ingenieure und Werker k?nnen QS-Systeme ohne Vorkenntnisse weitgehend selbst entwerfen
  • Die Entwicklungsarbeit sinkt dramatisch auf ein Minimum an Aufwand, da SaMoA Systeme nur wenige Eingangsdaten ben?tigt?? ?
  • SaMoA legt gro?en Wert auf ein gutes Problemverst?ndnis: durch gezielte Fragen an den Nutzer werden die Anforderungen vom System ermittelt
  • Statt aufw?ndiger Wartung passen sich die Systeme per Knopfdruck an ver?nderliche Bedingungen an (Organic Computing)
  • Statt tiefer, undurchsichtiger Modelle setzt SaMoA auf nachvollziehbare, transparente Verfahren
  • Hierfür werden evolution?re Algorithmen eingesetzt, wie beispielsweise Cartesian Genetic Programming
?

Cartesian Genetic Programming

CC BY-NC-ND

?

Cartesian Genetic Programming (CGP) z?hlt zu den genetischen Algorithmen - und geh?rt somit zu einen der vielz?hligen Verfahren des Machine Learnings.

Die Grundidee hierbei hinter diesem Algorithmus ist relativ einfach: Anf?nglich werden zuf?llige Programme erzeugt, die das vorgegebene Problem l?sen sollen. Durch naturinspirierte Mechanismen, wie die der Mutation, Selektion oder Kreuzung, werden diese anf?nglich erzeugten Programme stetig verbessert. Somit passen sich diese Programme nach kurzer Zeit dem Problem an und sind in der Lage, diese zu l?sen.

?

Eines der haupts?chlichen Anwendungsgebiete ist die automatische Erzeugung digitaler Schaltkreise. Weiterhin l?sst sich CGP für eine Vielzahl anderer Einsatzgebiete anpassen - wie die der Bildverarbeitung, wodurch CGP eine gro?e Rolle in SaMoA spielt. Denn durch CGP sind wir in der Lage, nachvollziehbare, transparente und verst?ndliche Machine Learning Verfahren einzusetzen. Au?erdem bietet es eine leistungsperformante,?parallelisierbare L?sung an.

?

?

?

Teilprojekt 3: Signalverarbeitung mit FPGA

Auf Basis aller Informationen über die gewünschte Signalverarbeitung innerhalb des Graphen, wird eine Auswahl von ben?tigten Sensoren getroffen die Konfiguration eines FPGA generiert. Der Signalweg besteht aus Sensoren, AD-Umsetzern, galvanischer Trennung, FPGA und Host-System. ?

?

Je nach Wahl der Sensoren und AD-Umsetzern werden im FPGA unterschiedliche Treiber und verschiedene Filterungen ben?tigt. Die Filter jedes Kanals k?nnen unterschiedlich in ihrem Typ, der Reihenfolge und ihren Standardwerten sein. Die Bibliothek zum Auslesen auf dem Host-System wird durch diese Parameter beeinflusst und muss daher auch mit jeder ?nderung am FPGA neu generiert werden.

?

Sensoren und Signalweg

W?gezellen ver?ndern ihre Spannung über die Kraft, die auf sie aufgebracht wird. In SaMoA werden damit das Gewicht des Prüfobjekts ermittelt. Mit einer Reihe von W?gezellen kann die Positionierung des Objekts auf einem Flie?band o.?. ermittelt werden und der Bildauswertung als Information bereitgestellt werden.

???? ??? ??? ??? ????

?

?

CC BY-NC-ND
CC BY-NC-ND
Mit Vibrationssensoren wird permanent die Zustand der Messeinheit überwacht und als Feedback an die Bildverarbeitung weitergeben. Sie kann die Qualit?t des Bildes und das daraus durch KI errechnete Ergebnis bewerten. Vibriert die Umgebung zu stark, ist dies ein Anzeichen, dass die Qualit?t des aufgenommenen Bild nicht für eine Auswertung ausreicht.

?

Um die St?reinwirkung der Umgebung gering halten, wird der analoge Signalweg von den Sensoren zum AD-Wandler rauscharm gehalten. Die Masse ist gefiltert und von den digitalen Ger?ten getrennt. Der Ausgang der Sensoren kann ggf. vor der ?bertragung für h?here Impedanz verst?rkt werden. Vor dem AD-Wandler wird das Signal mit einem Low-Pass gefiltert. Verbindungen und Leitungen sind gro?zügig dimensioniert.

?

Zur Absicherung des FPGA gegen ?berspannung ist der SPI galvanisch getrennt.

?

Mikrocontroller als ADC-Eingang

CC BY-NC-ND

Ein STM32F3 wird als Controller und AD-Wandler eingesetzt. Die speziell geschriebene Firmware lie?t Analogwerte ein und konvertiert sie in einen digitalen Datenstrom, paketiert sie und sendet sie auf Anfrage an den angeschlossenen FPGA weiter.

?

Schaltung und Firmware für hohe Pr?zision

Hochwertige Kondensatoren, Spulen, Widerst?nde

Um das ankommende, analoge Signal so gering wie m?glich zu beeinflussen, werden hochwertige, passive Komponenten eingesetzt und die Leiterbahnen kurz gehalten.

Spannungsreferenz

Eine hochwertige, externe Spannungsreferenz stellt den integrierten AD-Wandlern des STM32 eine rausch- und driftarme Spannung für den Umsetzer zur Verfügung.

CPU wird für die AD-Wandlung in Sleep gesetzt, um Spannungsschwankungen zu vermeiden

Auch sonstige Peripherie und interne Operationen des Prozessors sorgen für Rauschen in der Spannungsversorgung und damit in der AD-Umsetzung. Daher werden vor der AD-Wandlung die Peripherie abgeschaltet und der Chip in den Schlafmodus versetzt. Ist die Wandlung abgeschlossen weckt ein Interrupt den Chip wieder auf und schaltet die Peripherie wieder ein.

Datenübertragung

Alle analogen Werte werden in einem Doppelpuffer zwischengespeichert. Sind alle angeschlossenen Sensoren ausgelesen und findet keine Datenübertragung statt, werden sie in den Ausgangsspeicher zum Auslesen via SPI kopiert.

CC BY-NC-ND

?

?Vorl?ufiges Ergebnis des Vibrationssensors ohne genannte Optimierungen“

Designautomatisierung für FPGA-Konfiguration

CC BY-NC-ND

Der FPGA liest zu Beginn eines Arbeitszyklus die Daten via SPI vom STM32 ein und in den ADC-Treibern deserialisiert. ?ber den Rawbus und Rawmux werden die einzelnen digitalen Werte dann auf die implementierten Kan?le verteilt. ?

CC BY-NC-ND

?

Innerhalb eines Kanals werden werden die Daten über den Datenbus zwischen den Filtern sequentiell ausgetauscht. Die Anzahl, Art, Reihenfolge und Parameter der Filter wird aus dem DC43-Modell heraus generiert, wobei die Reihenfolge und die Parameter zur Laufzeit ge?ndert werden k?nnen. Sind alle Filter fertig und somit der Kanal, werden die Daten über den Channelbus an den Outputmux (kurz Omux) übertragen, dort zu einem Datenpaket zusammengefasst und via UART versendet. ?

Laufzeitverhalten

Alle Parameter in jedem Filter in jedem Kanal k?nnen individuell zur Laufzeit angepasst werden. Dazu sendet der Host via UART ein Command-Packet (CPKG) an den FPGA, der den gewünschten Kanal, Filter, die Parameter-ID und Parameterwert beinhaltet. Umgekehrt k?nnen die aktuellen Einstellungen und Werte auf dem gleichen Weg auch abgefragt werden. Dann erzeugt der Filter ein Antwortpaket (auch CPKG) und verschickt es über den Daten- und Channelbus.

Geht die Datenverbindung zum Host verloren, schickt dieser eine Synchronisationsanfrage an den FPGA. Dieser unterbricht eine aktuelle Datenübertragung und geht in den Ruhemodus. Mit dem n?chsten Start-Bit k?nnen sich FPGA und Host neu synchronisieren.

?

Pythonbibliothek zum Auslesen der Daten und ?ndern der Parameter

CC BY-NC-ND

Die generierte Bibliothek libsamoasoc bietet Funktionen um den kontinuierlichen Datenstrom des UART in Pakete zu unterteilen und die darin befindlichen Informationen zu strukturieren. Die Werte werden deserialisiert und stehen dann der Anwendung über eine API zur Verfügung. Auch fordert sie eine Neusynchronisation mit dem FPGA an, wenn Pakete fehlerhaft sind.

Der Anwendung steht eine Schnittstelle zur Erstellung von Paketen (Serialisierung) zum ?ndern von Parametern, dem Ein- und Ausschalten oder der Abfrage zum Status eines Filters zur Verfügung. Diese werden über den UART an den FPGA geschickt

?

?

?


?

Kontakte

Universit?t Augsburg: Organic Computing

? Universit?t Augsburg

Technische Systeme beinhalten eine immer gr??ere Menge an Software und werden in Zukunft nicht mehr einzeln, sondern in vernetzten Strukturen eingesetzt. Weiterhin werden solche Systeme sich immer autonomer verhalten, um sich an ge?nderte Umweltbedingungen, ver?nderte Ziele, etc. anpassen zu k?nnen. Solche Systeme sind selbstadaptiv, selbstorganisierend, selbstheilend, selbstoptimierend, etc.

Diese Eigenschaften führen dazu, dass mit der Anzahl der Freiheitsgrade die Komplexit?t solcher Systeme massiv steigt. Organic Computing besch?ftigt sich mit der Erforschung von Methoden und Techniken, um solche Systeme erfolgreich entwickeln und betreiben zu k?nnen.

Kontakt:

Henning Cui

/de/fakultaet/fai/informatik/prof/oc/

?

henning.cui@informatik.uni-augsburg.de

?

?

Fraunhofer IGCV

CC BY-NC-ND

Fraunhofer IGCV konzentriert sich auf die Entwicklung innovativer L?sungen für die Industrie in den Bereichen Gie?erei-, Composite- und Verarbeitungstechnik. Unser Ziel ist es, die Produktionstechnik in verschiedenen Branchen wie der Automobilindustrie, dem Maschinenbau und der Luft- und Raumfahrt zu optimieren. Die Abteilung Digitalisierung und KI in der Produktion legt den Fokus auf den Transfer aktueller Forschungsergebnisse wie generative KI, intelligente Sensorintegration und Adaptive Monitoringsysteme für Anwender aus dem Mittelstand und der verarbeitenden Industrie.?

Kontakt:

Andreas Margraf

https://www.igcv.fraunhofer.de

?

andreas.margraf@igcv.fraunhofer.de

?

?

Universit?t Stuttgart: Institut für Flugzeugbau

?
CC BY-NC-ND
?
Kontakt:

Simon Heimbach

https://www.ifb.uni-stuttgart.de/institut/team/Heimbach/

?

heimbach@ifb.uni-stuttgart.de

?

?

?

?

Suche