Gastvortrag "What We Learned and What We Will Learn"
Am 07.11.2024 h?lt Prof. Andreas Kipf von der Technischen Universit?t Nürnberg ab 16:00 Uhr einen Gastvortrag in der Ringvorlesung des Elitestudiengangs Software Engineering. Der Vortrag findet in Raum 1055N statt und hat den Titel "What We Learned and What We Will Learn". Zum Vortrag sind alle herzlich eingeladen. ? Abstract: In this talk, I will provide an overview of my past, ongoing, and future ML for systems research, starting with my postdoc years at MIT, where I worked on benchmarking learned indexes, learning cardinality estimates, and developing SageDB, an instance-optimized Data Analytics System. I will also talk about my experience at Amazon, discussing my contributions to intelligent scaling in Amazon Redshift and Text2SQL translations. I will shine some light on the characteristics of cloud data warehouse workloads, and will emphasize the potential of (sub) query caching. Finally, I will talk about my ongoing and future research at UTN, where we work on simplifying data loading with LLMs, correlation-aware column compression, and optimizing queries by learning from query history. Bio: Andreas Kipf is a professor of data systems at the 伟德国际_伟德国际1946$娱乐app游戏 of Technology Nuremberg (UTN). Previously, he was an applied scientist at AWS and a postdoc researcher in the MIT Data Systems Group where he worked with Prof. Tim Kraska. His research explores applications of AI to build next-gen data systems that are efficient and easy to use. Andreas earned his PhD at TUM where he worked with Prof. Alfons Kemper and Prof. Thomas Neumann. During his PhD, he interned with Google in Mountain View & Zurich to work on query-driven materialization and lightweight secondary indexing. Andreas won the 2016 SIGMOD Best Demonstration Award and the 2017 SIGMOD Programming Contest. Google Scholar:?https://scholar.google.com/citations?user=y3IdRusAAAAJ Prof. Kipf ist Absolvent des Elitestudiengangs und hat an der TUM promoviert.
Twitter:?https://x.com/andreaskipf